The Masters School Innovation and Entrepreneurship Center

Retaining Wall Calculations

06/25/2021

Prepared for

Ms. Jennifer Olson, AIA, LEED AP Marvel Architects, PLLC New York, NY 10013

Prepared by

Silman

32 Old Slip, 10th Floor

New York, NY 10005

Silman Project #19856

The Masters School IEC Retaining Wall, Structural Calculations

06/25/2021

Wall 101

The following calculations represent the design for the cantilever retaining wall with a maximum retained soil height of 6'-6".

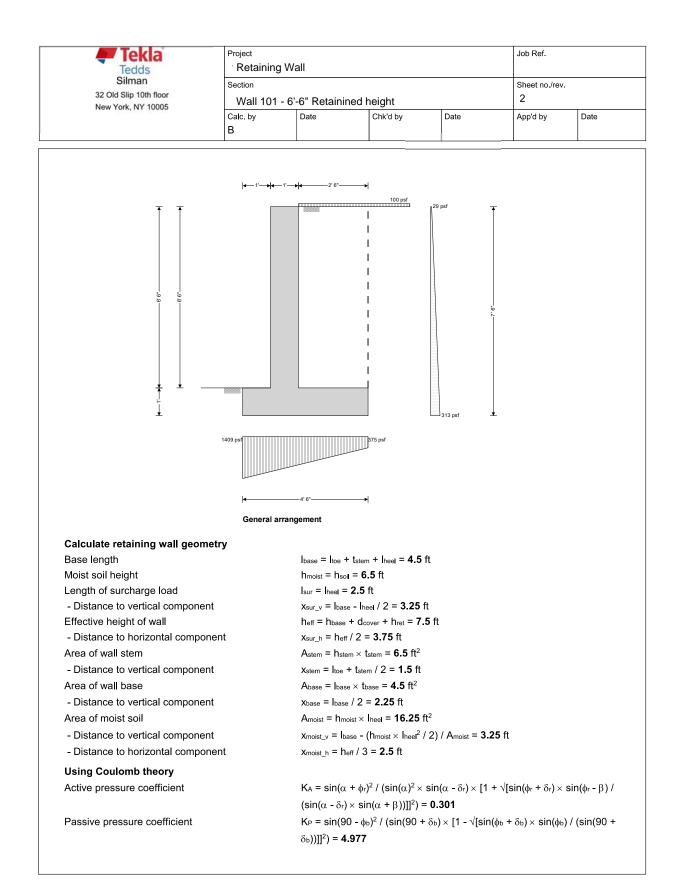
Tekla Tedds Silman 32 Old Slip 10th floor New York, NY 10005	Project Retaining W	all	Job Ref.			
	Section Wall 101 - 6	-6" Retainined I	Sheet no./rev. 1			
	Calc. by B	Date	Chk'd by	Date	App'd by	Date

RETAINING WALL ANALYSIS

Retaining wall details

In accordance with International Building Code 2015

Tedds calculation version 2.9.07


Stem type	Cantilever
Stem height	h _{stem} = 6.5 ft
Stem thickness	t _{stem} = 12 in
Angle to rear face of stem	α = 90 deg
Stem density	γ _{stem} = 150 pcf
Toe length	l _{toe} = 1 ft
Heel length	I _{heel} = 2.5 ft
Base thickness	t _{base} = 12 in
Base density	γ _{base} = 150 pcf
Height of retained soil	h _{ret} = 6.5 ft
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 ft
Retained soil properties	
Soil type	Very dense well graded sand
Moist density	γ _{mr} = 130 pcf
Saturated density	γ _{sr} = 130 pcf
Effective angle of internal resistance	$\phi_r = 30 \text{ deg}$
Effective wall friction angle	δ_r = 15 deg
Base soil properties	
Soil type	Very Dense well graded sand
Soil density	γ _b = 130 pcf
Cohesion	c _b = 0 psf
Effective angle of internal resistance	$\phi_{b} = 30 \text{ deg}$
Effective wall friction angle	δ _b = 15 deg
Effective base friction angle	δ _{bb} = 30 deg
0	5

Effective base friction angle Allowable bearing pressure

Loading details Live surcharge load

Surcharge∟ = 100 psf

Pbearing = 4000 psf

	Project Retainir	ng Wall			Job Ref.			
Silman	Section	.9	Sheet no./rev	Sheet no./rev.				
32 Old Slip 10th floor	Wall 10	1 - 6'-6" Retair	nined height		3			
	Calc. by B	Date	Chk'd by	Date	App'd by	Date		
From IBC 2015 cl.1807.2.3 Safety	factor				I			
Load combination 1		1.0 × De	ad + 1.0 × Live + 1	I.0 × Lateral e	arth			
Sliding check								
Vertical forces on wall								
Wall stem		F _{stem} = A	_{stem} × γ _{stem} = 975 pl	lf				
Wall base			_{base} × γ _{base} = 675 pl					
Moist retained soil		F _{moist_v} =	$A_{moist} \times \gamma_{mr} = 2113$	plf				
Total		$F_{total_v} = F_{total_v}$	F _{stem} + F _{base} + F _{mois}	_{t_v} = 3763 plf				
Horizontal forces on wall								
Surcharge load		$F_{sur_h} = K$	$X_A imes cos(\delta_r) imes Surch$	narge∟× h _{eff} =	218 plf			
Moist retained soil		F _{moist_h} =	$K_A \times cos(\delta_r) \times \gamma_{mr}$	< h _{eff} ² / 2 = 10	65 plf			
Total		F _{total_h} = I	Fsur_h + Fmoist_h = 12	2 83 plf				
Check stability against sliding								
Base soil resistance		F _{exc_h} = k	$K_P imes cos(\delta_b) imes \gamma_b imes \mathbf{cos}(\delta_b)$	(h _{pass} + h _{base}) ²	/ 2 = 312 plf			
Base friction		F _{friction} = F	= _{total_v} × tan(δ _{bb}) = 2	2172 plf				
Resistance to sliding		Frest = Fe	xc_h + Ffriction = 2485	5 plf				
Factor of safety		FoS₅I = F	Frest / Ftotal_h = 1.937 PASS		afety against slid	dina is adeo		
Overturning check			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		aroty agamet one	ing to unoq		
Vertical forces on wall								
Wall stem		F _{stem} = A	_{stem} × γ _{stem} = 975 pl	lf				
Wall base		$F_{base} = A$	$_{base} imes \gamma_{base} = 675 ext{ pl}$	lf				
Moist retained soil		F _{moist_v} =	$A_{moist} \times \gamma_{mr} = 2113$	plf				
Total		$F_{total_v} = F_{total_v}$	F _{stem} + F _{base} + F _{mois}	_{t_v} = 3763 plf				
Horizontal forces on wall								
Surcharge load		$F_{sur_h} = K$	$X_A \times \cos(\delta_r) \times Surch$	narge∟ × h _{eff} =	218 plf			
Moist retained soil			$K_A \times cos(\delta_r) \times \gamma_{mr}$					
Base soil			$K_{P} \times \operatorname{\mathbf{cos}}(\delta_{b}) \times \gamma_{b} \times$		² / 2 = -312 plf			
Total		F _{total_h} = I	Fsur_h + Fmoist_h + Fe	_{exc_h} = 970 plf				
Overturning moments on wall								
Surcharge load		_	$F_{sur_h} \times x_{sur_h} = 819$	_				
Moist retained soil		-	= F _{moist_h} × X _{moist_h} =	—				
Total		Mtotal_OT =	= Msur_OT + Mmoist_OT	r = 3480 lb_ft/1	π			
Restoring moments on wall								
Wall stem		-	F _{stem} × x _{stem} = 146	-				
Wall base		_	F _{base} × x _{base} = 151	—				
Moist retained soil			$= F_{\text{moist}_v} \times X_{\text{moist}_v} =$	_				
Base soil		_	$-F_{exc_h} \times x_{exc_h} = 10$	_	- 0054 15 0.00			
Total		IVItotal_R =	M _{stem_R} + M _{base_R} +	· IVImoist_R + Me>	_{kc_R} = אָשָּטו וֹם_tt/tt			
Check stability against overturnin	g							
Factor of safety		$F \cap S_{ot} = N$	Ntotal_R / Mtotal_OT = 2	7859 > 15				

Tekka Tedds Silman 32 Old Slip 10th floor New York, NY 10005	Project Retaining W	all	Job Ref.			
	Section Wall 101 - 6'	-6" Retainined I	Sheet no./rev. 4			
	Calc. by B	Date	Chk'd by	Date	App'd by	Date

PASS - Factor of safety against overturning is adequate

Bearing pressure check Vertical forces on wall

Wall stem Wall base Surcharge load Moist retained soil Total Horizontal forces on wall Surcharge load Moist retained soil Base soil Total Moments on wall Wall stem Wall base Surcharge load Moist retained soil Base soil Total Check bearing pressure Distance to reaction Eccentricity of reaction Loaded length of base Bearing pressure at toe Bearing pressure at heel Factor of safety

RETAINING WALL DESIGN

In accordance with ACI 318-14

Concrete details

Compressive strength of concrete Concrete type

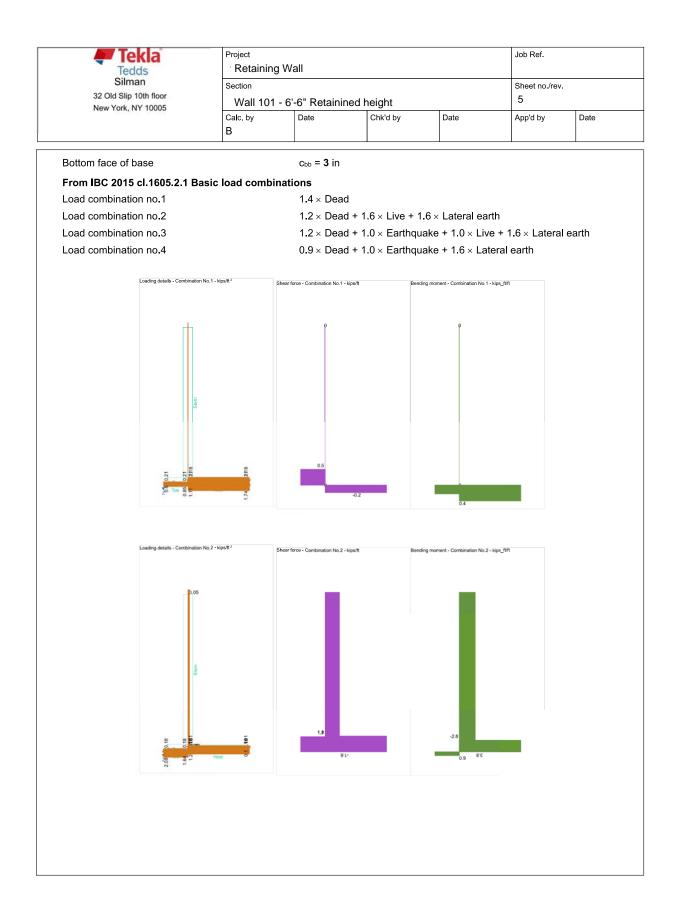
Reinforcement details

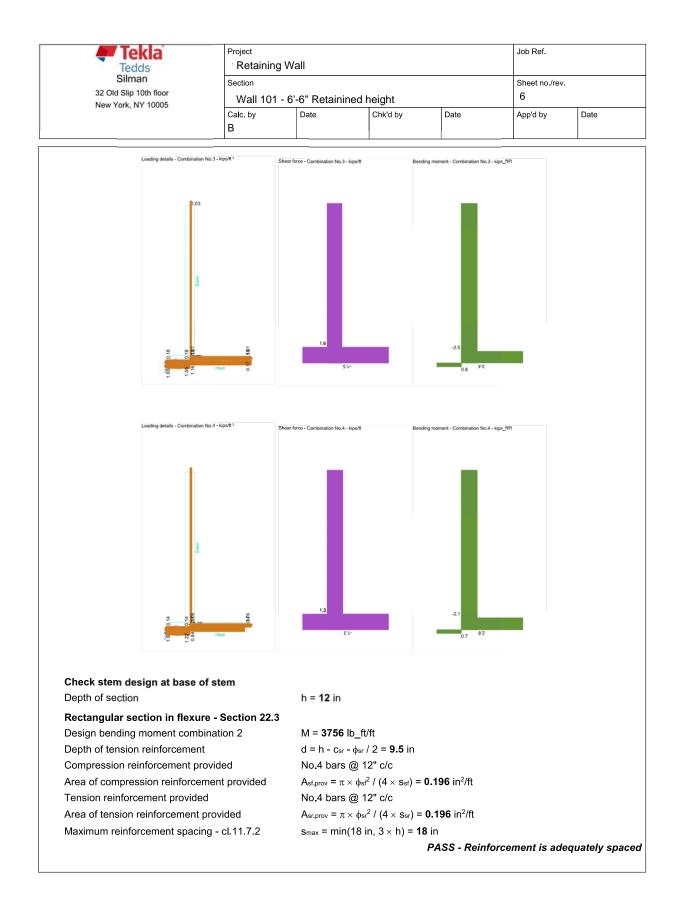
Yield strength of reinforcement Modulus of elasticity or reinforcement

Cover to reinforcement Front face of stem Rear face of stem Top face of base

$$\begin{split} F_{sur_h} &= K_A \times \cos(\delta_r) \times Surcharge_L \times h_{eff} = \textbf{218} \ plf \\ F_{moist_h} &= K_A \times \cos(\delta_r) \times \gamma_{mr} \times h_{eff}^2 \ / \ 2 = \textbf{1065} \ plf \\ F_{pass_h} &= -K_P \times \cos(\delta_b) \times \gamma_b \times (d_{cover} + h_{base})^2 \ / \ 2 = \textbf{-312} \ plf \\ F_{total_h} &= max(F_{sur_h} + F_{moisl_h} + F_{pass_h} - F_{total_v} \times tan(\delta_{bb}), \ 0 \ plf) = \textbf{0} \ plf \end{split}$$

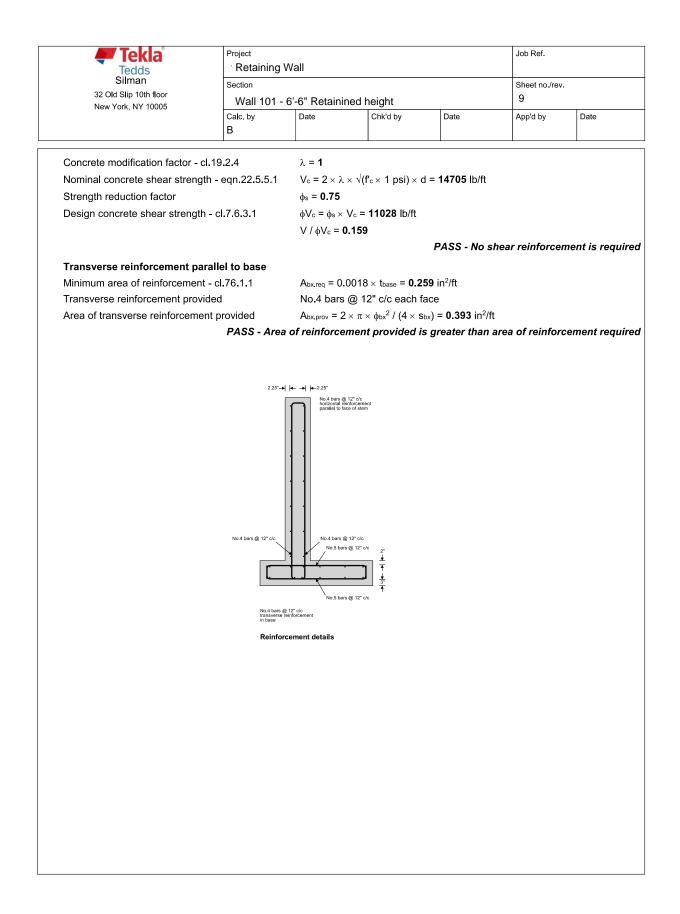
$$\begin{split} & \mathsf{M}_{stem} = \mathsf{F}_{stem} \times x_{stem} = \mathbf{1462} \ \mathsf{lb}_{ft} / \mathsf{ft} \\ & \mathsf{M}_{base} = \mathsf{F}_{base} \times x_{base} = \mathbf{1519} \ \mathsf{lb}_{ft} / \mathsf{ft} \\ & \mathsf{M}_{sur} = \mathsf{F}_{sur_v} \times x_{sur_v} - \mathsf{F}_{sur_h} \times x_{sur_h} = \mathbf{-6} \ \mathsf{lb}_{ft} / \mathsf{ft} \\ & \mathsf{M}_{moist} = \mathsf{F}_{moist_v} \times x_{moist_v} - \mathsf{F}_{moist_h} \times x_{moist_h} = \mathbf{4204} \ \mathsf{lb}_{ft} / \mathsf{ft} \\ & \mathsf{M}_{pass} = -\mathsf{F}_{pass_h} \times x_{pass_h} = \mathbf{104} \ \mathsf{lb}_{ft} / \mathsf{ft} \\ & \mathsf{M}_{total} = \mathsf{M}_{stem} + \mathsf{M}_{base} + \mathsf{M}_{sur} + \mathsf{M}_{moist} + \mathsf{M}_{pass} = \mathbf{7283} \ \mathsf{lb}_{ft} / \mathsf{ft} / \mathsf{ft} \end{split}$$


$\label{eq:starting} \begin{array}{l} \hline x = M_{total_v} / F_{total_v} = \textbf{1.815} \ ft \\ e = \ x - I_{base} / 2 = \textbf{-0.435} \ ft \\ I_{load} = I_{base} = \textbf{4.5} \ ft \\ q_{toe} = F_{total_v} / I_{base} \times (1 - 6 \times e / I_{base}) = \textbf{1409} \ psf \\ q_{heel} = F_{total_v} / I_{base} \times (1 + 6 \times e / I_{base}) = \textbf{375} \ psf \\ FoS_{bp} = P_{bearing} / max(q_{toe}, q_{heel}) = \textbf{2.84} \end{array}$


Tedds calculation version 2.9.07

f'_c = **4000** psi Normal weight

f_y = **60000** psi E_s = **29000000** psi


Csf = **2.25** in Csr = **2.25** in Cbt = **2** in

Tedds	Project Retaining	Wall		Job Ref.	JOD REI.				
Silman			Sheet no./rev	Sheet no./rev.					
32 Old Slip 10th floor New York, NY 10005	Wall 101 -	6'-6" Retainir	ed height		7				
	Calc. by B	Date	Chk'd by	Date	App'd by	Date			
Depth of compression block		a = A _{sr.prov}	× f _y / (0.85 × f'c) =	• 0.289 in					
Neutral axis factor - cl.22.2.2.4.3	3	$\beta_1 = \min(m)$	$ax(0.85 - 0.05 \times$	(f'c - 4 ksi) / 1	ksi, 0.65), 0 . 85) =	= 0.85			
Depth to neutral axis		c = a / β1 =	• 0.34 in						
Strain in reinforcement		εt = 0.003 :	< (d - c) / c = 0.08	80896					
					s in the tension				
Strength reduction factor		$\phi_f = min(m$	ax(0.65 + (εt - 0.0	002) × (250 / 3), 0.65), 0.9) = 0 .	9			
Nominal flexural strength			$v \times f_y \times (d - a / 2)$	_					
Design flexural strength		$\phi M_n = \phi_f \times$	Mn = 8266 lb_ft/ft	l					
		M / φMn = 0							
			Design flexural	l strength exc	eeds factored b	ending mor			
By iteration, reinforcement requi		A _{sr.des} = 0.0		10 im ² /ft					
Minimum area of reinforcement			× A _{sr.des} / 3 = 0.1 1						
		cement prov	ided is greater t	nan minimum	area or reinfor	sement requ			
Rectangular section in shear	Section 22.5	1/ 4=00.0	- 161						
Design shear force	10.0.1	V = 1582	o/ft						
Concrete modification factor - cl		λ = 1 V _c = 2 × λ × √(f _c × 1 psi) × d = 14420 lb/ft							
Nominal concrete shear strengt	n - eqn.22.5.5.1		$\times v(f_c \times 1 \text{ psi}) \times c$	d = 14420 ID/ft					
Strength reduction factor		φs = 0.75	/ 40045 II //						
Design concrete shear strength	- CI.11.5.1.1	$\phi V_c = \phi_s \times V_c = 10815 \text{ lb/ft}$ V / $\phi V_c = 0.146$							
		$\nabla / \phi V_c = 0$.146	PASS - No	shear reinforcei	ment is requ			
Horizontal reinforcement para	llel to face of st	em				-			
Minimum area of reinforcement			002 × t _{stem} = 0.28	8 in²/ft					
Transverse reinforcement provid	ded	No.4 bars	@ 12" c/c each fa	ace					
Area of transverse reinforcemer	nt provided	A _{sx.prov} = 2	$\times \pi \times \phi_{sx^2}$ / (4 \times s	_{sx}) = 0.393 in ² /	ft				
	PASS - Area	a of reinforce	ment provided is	s greater than	area of reinfor	cement requ			
Check base design at toe									
Depth of section		h = 12 in							
Rectangular section in flexure	e - Section 22.3								
Design bending moment combin	nation 2	M = 878 lb	_ft/ft						
Depth of tension reinforcement		d = h - c _{bb} - φ _{bb} / 2 = 8.688 in							
Compression reinforcement pro	vided	No.5 bars @ 12" c/c							
Area of compression reinforcem	ent provided	$A_{bt,prov} = \pi \times \phi_{bt}^2 / (4 \times s_{bt}) = 0.307 \text{ in}^2/\text{ft}$							
Tension reinforcement provided		No.5 bars @ 12" c/c							
Area of tension reinforcement provided		$A_{bb,prov} = \pi \times \phi_{bb}^2 / (4 \times s_{bb}) = 0.307 \text{ in}^2/\text{ft}$							
Maximum reinforcement spacing	g - cl.7.7.2.3	s _{max} = min	(18 in, 3 × h) = 18						
					forcement is add	equately spa			
Depth of compression block			× f _y / (0.85 × f'c) =						
Neutral axis factor - cl.22.2.2.4.3	3		ax(0.85 - 0.05 ×	(f'c - 4 ksi) / 1	ksi, 0.65), 0.85) =	= 0.85			
Depth to neutral axis		c = a / β1 =							
Strain in reinforcement		$\varepsilon_t = 0.003$	< (d - c) / c = 0.0 4			, <u>.</u> .			
				Section i	s in the tension	controlled -			

F	Project • Retaining V	N/all			Job Ref.			
Silman	Retaining V	vall			Charles (
32 Old Slip 10th floor	Section		h a taile t		Sheet no./rev. 8			
New York, NY 10005		6'-6" Retainined	Chk'd by	Date		Date		
	Calc. by B	Date	Clik d by	Date	App'd by	Date		
Strength reduction factor		$h = \min(max)$)))))))))) ())))) ()))) ()))) ()))) ())))) ())))) ()	(0.65) (0.0) = 0			
Strength reduction factor					, 0.65), 0.9) = 0 .9	9		
Nominal flexural strength				= 12980 lb_ft/i	π			
Design flexural strength			= 11682 lb_ft/ 	/ft				
		M / φMn = 0.0						
Durite netice and information of the service of the			-	l strength exc	eeds factored b	ending mor		
By iteration, reinforcement required b		Abb.des = 0.023		:2164				
Minimum area of reinforcement - cl.7			18 × h = 0.259 Id is greater t		area of rainfor	omont roa		
		cement provide	a is greater t	nan minimum	area of reinford	ement requ		
Rectangular section in shear - Sec	ction 22.5	V 4000 P 10						
Design shear force		V = 1683 lb/ft						
Concrete modification factor - cl. 19.2		λ = 1	ا م					
Nominal concrete shear strength - ed	qn.22.5.5.1		$(t_c \times 1 \text{ psi}) \times c$	d = 13187 lb/ft				
Strength reduction factor		$\phi_s = 0.75$						
Design concrete shear strength - cl.7	7.6.3.1	$\phi V_c = \phi_s \times V_c = 9890 \text{ lb/ft}$						
		V / ∳Vc = 0.17	0					
				PASS - No s	shear reinforcer	nent is requ		
Check base design at heel								
Depth of section		h = 12 in						
Rectangular section in flexure - Se	ection 22.3							
Design bending moment combination	n 2	M = 2768 lb_	ft/ft					
Depth of tension reinforcement		$d = h - c_{bt} - \phi_b$	t / 2 = 9.688 in	ı				
Compression reinforcement provided	b	No.5 bars @	12" c/c					
Area of compression reinforcement p	provided	$A_{bb.prov} = \pi \times \phi$	$_{\rm bb}^2$ / (4 $ imes$ s _{bb}) =	= 0.307 in²/ft				
Tension reinforcement provided		No.5 bars @	12" c/c					
Area of tension reinforcement provid	ed	$A_{bt,prov} = \pi \times \phi$	$bt^2 / (4 \times s_{bt}) =$	0.307 in²/ft				
Maximum reinforcement spacing - cl	.7.7.2.3	s _{max} = min(18	in, 3 × h) = 18	8 in				
				PASS - Reinf	orcement is add	equately spa		
Depth of compression block		$a = A_{bt,prov} \times f_y$	/ (0.85 × f'c) =	= 0.451 in				
Neutral axis factor - cl.22.2.2.4.3		$\beta_1 = \min(\max$	(0.85 - 0.05 ×	(f'c - 4 ksi) / 1 k	(si, 0.65), 0.85) =	0.85		
Depth to neutral axis		$c = a / \beta_1 = 0.$	531 in					
Strain in reinforcement		$\varepsilon_t = 0.003 \times (0.003)$	d - c) / c = 0.0	51753				
				Section is	s in the tension	controlled z		
Strength reduction factor		$\phi_{f} = \min(\max(f))$	0.65 + (ɛt - 0.0	002) × (250 / 3)	, 0.65), 0.9) = 0 .	9		
Nominal flexural strength		$M_n = A_{bt.prov} \times$	f _y × (d - a / 2)	= 14514 lb_ft/f	t			
Design flexural strength		$\phi M_n = \phi_f \times M_n = 13063 \text{ Ib}_ft/ft$						
		M / ϕ M _n = 0.2	12					
		PASS - D	esign flexura	l strength exc	eeds factored b	ending mor		
By iteration, reinforcement required b	by analysis	A _{bt.des} = 0.064	in²/ft					
Minimum area of reinforcement - cl.7	7.6.1.1	A _{bt.min} = 0.001	8 × h = 0.259	in²/ft				
PASS - Are	ea of reinfor	cement provide	d is greater t	han minimum	area of reinford	ement requ		
Rectangular section in shear - Sec	ction 22.5							
Design shear force		V = 1755 ∣b/ft						

Wall 102

The following calculations represent the design for the cantilever retaining wall with a maximum retained soil height of 12'-6".

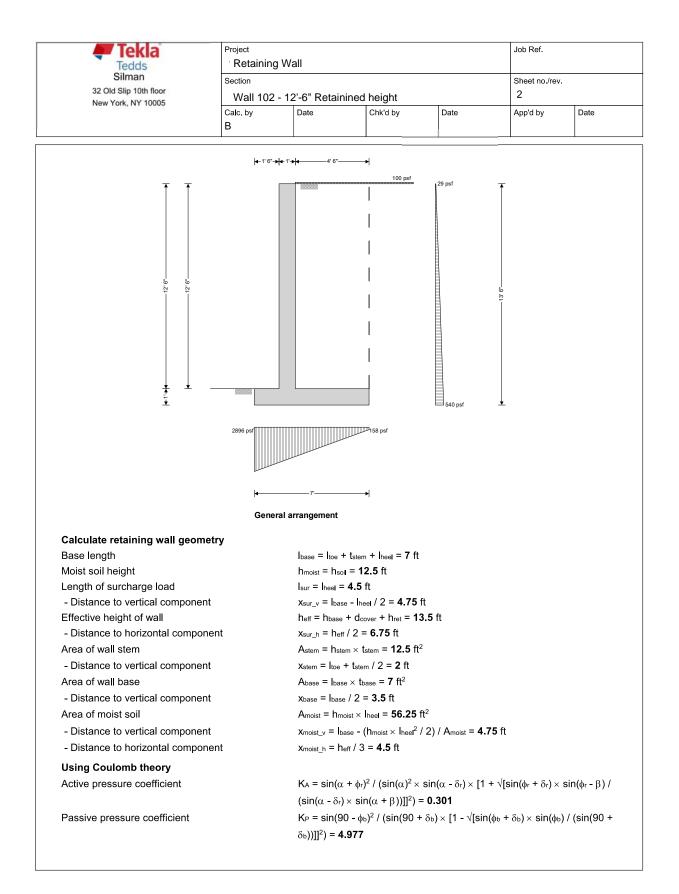
Tekla Tedds Silman 32 Old Slip 10th floor New York, NY 10005	Project Retaining Wa	all	Job Ref.			
	Section Wall 102 - 12	2'-6" Retainined	Sheet no./rev. 1			
	Calc. by B	Date	Chk'd by	Date	App'd by	Date

RETAINING WALL ANALYSIS

In accordance with International Building Code 2015

Tedds calculation version 2.9.07

Retaining wall details	
Stem type	Cantilever
Stem height	h _{stem} = 12.5 ft
Stem thickness	t _{stem} = 12 in
Angle to rear face of stem	α = 90 deg
Stem density	γ _{stem} = 150 pcf
Toe length	I _{toe} = 1.5 ft
Heel length	I _{heel} = 4.5 ft
Base thickness	t _{base} = 12 in
Base density	γ _{base} = 150 pcf
Height of retained soil	h _{ret} = 12.5 ft
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	$d_{cover} = 0 ft$
Retained soil properties	
Soil type	Very dense well graded sand
Moist density	γ _{mr} = 130 pcf
Saturated density	
Saturated density	γsr = 130 pcf
Effective angle of internal resistance	γ _{sr} = 130 pcf φ _r = 30 deg
•	· ·
Effective angle of internal resistance	$\phi_r = 30 \text{ deg}$
Effective angle of internal resistance Effective wall friction angle	$\phi_r = 30 \text{ deg}$
Effective angle of internal resistance Effective wall friction angle Base soil properties	$φ_r = 30 \text{ deg}$ $δ_r = 15 \text{ deg}$
Effective angle of internal resistance Effective wall friction angle Base soil properties Soil type	ϕ_r = 30 deg δ_r = 15 deg Very Dense well graded sand
Effective angle of internal resistance Effective wall friction angle Base soil properties Soil type Soil density	ϕ_r = 30 deg δ_r = 15 deg Very Dense well graded sand γ_b = 130 pcf
Effective angle of internal resistance Effective wall friction angle Base soil properties Soil type Soil density Cohesion	ϕ_r = 30 deg δ_r = 15 deg Very Dense well graded sand γ_b = 130 pcf c_b = 0 psf
Effective angle of internal resistance Effective wall friction angle Base soil properties Soil type Soil density Cohesion Effective angle of internal resistance	$ \phi_r = 30 \text{ deg} $ $ \delta_r = 15 \text{ deg} $ Very Dense well graded sand $ \gamma_b = 130 \text{ pcf} $ $ c_b = 0 \text{ psf} $ $ \phi_b = 30 \text{ deg} $


P_{bearing} = **4000** psf

Loading details

Live surcharge load

Allowable bearing pressure

Surcharge⊾ = **100** psf

	Project Retainir	ng Wall	Job Ref.	300 1161.		
Silman	Section	0	Sheet no./rev	Sheet no./rev.		
32 Old Slip 10th floor New York, NY 10005	Wall 10	2 - 12'-6" Retair	nined height		3	
	Calc. by B	Date	Chk'd by	Date	App'd by	Date
From IBC 2015 cl.1807.2.3 Safety	factor					
Load combination 1		1.0 × Dea	d + 1.0 × Live + 1	.0 × Lateral ea	arth	
Sliding check						
Vertical forces on wall						
Wall stem		F _{stem} = A _{st}	_{em × γstem} = 1875 μ	olf		
Wall base			_{ise × γbase} = 1050 μ			
Moist retained soil		$F_{moist_v} = A$	a _{moist} × γ _{mr} = 7313	plf		
Total		$F_{total_v} = F_s$	stem + Fbase + Fmoist	t_v = 10238 plf		
Horizontal forces on wall						
Surcharge load		Fsur_h = KA	$\times \cos(\delta_r) \times Surch$	narge∟ × h _{eff} = :	393 plf	
Moist retained soil		F _{moist_h} = k	$A \times COS(\delta r) \times \gamma mr \times$	< h _{eff} ² / 2 = 344	9 plf	
Total		F _{total_h} = F	sur_h + Fmoist_h = 38	342 plf		
Check stability against sliding						
Base soil resistance		$F_{exc_h} = K_F$	$P \times \cos(\delta_b) \times \gamma_b \times (\delta_b)$	(h _{pass} + h _{base}) ² /	′ 2 = 312 plf	
Base friction		Friction = Fr	_{otal_v} × tan(δ _{bb}) = 5	5 911 plf		
Resistance to sliding		F _{rest} = F _{exc}	_h + F _{friction} = 6223	3 plf		
Factor of safety		FoSsI = Fr	est / Ftotal_h = 1.62			
Overturning check			PASS	- Factor of sa	nfety against slid	aing is adeq
Vertical forces on wall						
Wall stem		Fetom = Act	_{em} × γ _{stem} = 1875 μ	olf		
Wall base			$x_{\rm ise} \times \gamma_{\rm base} = 1050$ [
Moist retained soil			$\Lambda_{moist} \times \gamma_{mr} = 7313$			
Total		_	stem + Fbase + Fmoist	•		
Horizontal forces on wall						
Surcharge load		Fsur_h = KA	$\times \cos(\delta_r) \times Surch$	narge∟ × h _{eff} = ∶	393 plf	
Moist retained soil		F _{moist_h} = k	$A \times \cos(\delta_r) \times \gamma_{mr} \times \gamma_{mr}$	< h _{eff} ² / 2 = 344	9 plf	
Base soil		F _{exc_h} = -K	$P \times \cos(\delta_b) \times \gamma_b \times$	(h _{pass} + h _{base}) ²	/ 2 = -312 plf	
Total		F _{total_h} = F	sur_h + Fmoist_h + Fe	_{exc_h} = 3530 plf		
Overturning moments on wall						
Surcharge load		M _{sur_OT} = F	$sur_h \times x_{sur_h} = 26$	53 lb_ft/ft		
Moist retained soil		M _{moist_OT} =	$F_{moist_h} \times x_{moist_h} =$	= 15520 lb_ft/ft	:	
Total		M _{total_OT} =	Msur_OT + Mmoist_OT	= 18174 lb_ft	/ft	
Restoring moments on wall						
Wall stem		M _{stem_R} = I	=stem × Xstem = 375	0 lb_ft/ft		
Wall base		$M_{base_R} = I$	-base × xbase = 367	5 lb_ft/ft		
Moist retained soil		M _{moist_R} =	$F_{moist_v} \times \mathbf{x}_{moist_v} =$	34734 lb_ft/ft		
Base soil		—	$F_{exc_h} \times x_{exc_h} = 10$	_		
		$M_{total_R} = N$	/Istem_R + Mbase_R +	· M _{moist_R} + M _{ex}	_{_R} = 42264 lb_ft/	ft
Total						
Total Check stability against overturnin	g					

	Project Retaining W	all	Job Ref.			
Silman 32 Old Slip 10th floor New York, NY 10005	Section Wall 102 - 12'-6" Retainined height				Sheet no./rev. 4	
	Calc. by B	Date	Chk'd by	Date	App'd by	Date

PASS - Factor of safety against overturning is adequate

Bearing pressure check Vertical forces on wall

Wall stem $F_{stem} = A_{stem} \times \gamma_{stem} = 1875 \text{ plf}$ Wall base $F_{base} = A_{base} \times \gamma_{base} = 1050 \text{ plf}$ Surcharge load $F_{sur_v} = Surcharge_L \times I_{heel} = 450 \text{ plf}$ $F_{moist_v} = A_{moist} \times \gamma_{mr} = \textbf{7313} \text{ plf}$ Moist retained soil Total Ftotal_v = Fstem + Fbase + Fsur_v + Fmoist_v = 10688 plf Horizontal forces on wall Surcharge load $F_{sur h} = K_A \times cos(\delta_r) \times Surcharge_L \times h_{eff} = 393 plf$ $F_{moist_h} = K_A \times cos(\delta_r) \times \gamma_{mr} \times h_{eff}^2 / 2 = 3449 \text{ plf}$ Moist retained soil Base soil $F_{pass_h} = -K_P \times cos(\delta_b) \times \gamma_b \times (d_{cover} + h_{base})^2 / 2 = -312 \text{ plf}$ Total $F_{total_h} = max(F_{sur_h} + F_{moist_h} + F_{pass_h} - F_{total_v} \times tan(\delta_{bb}), 0 plf) = 0 plf$ Moments on wall Wall stem Mstem = Fstem × xstem = 3750 lb ft/ft $M_{base} = F_{base} \times x_{base} = 3675 \text{ lb_ft/ft}$ Wall base Surcharge load $M_{sur} = F_{sur_v} \times x_{sur_v} - F_{sur_h} \times x_{sur_h} = -516 \text{ Ib}_ft/ft$ Moist retained soil $M_{moist} = F_{moist_v} \times x_{moist_v} - F_{moist_h} \times x_{moist_h} = 19214 \text{ Ib}_{ft/ft}$ Base soil $M_{pass} = -F_{pass_h} \times x_{pass_h} = 104 \text{ Ib_ft/ft}$ Total Mtotal = Mstem + Mbase + Msur + Mmoist + Mpass = 26228 lb ft/ft Check bearing pressure Distance to reaction _____x = M_{total} / F_{total_v} = **2.454** ft e = x - l_{base} / 2 = -1.046 ft Eccentricity of reaction Iload = Ibase = 7 ft Loaded length of base $q_{toe} = F_{total_v} / I_{base} \times (1 - 6 \times e / I_{base}) = 2896 \text{ psf}$ Bearing pressure at toe Bearing pressure at heel $q_{heel} = F_{total v} / I_{base} \times (1 + 6 \times e / I_{base}) = 158 \text{ psf}$ Factor of safety FoSbp = Pbearing / max(qtoe, qheel) = 1.381

PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

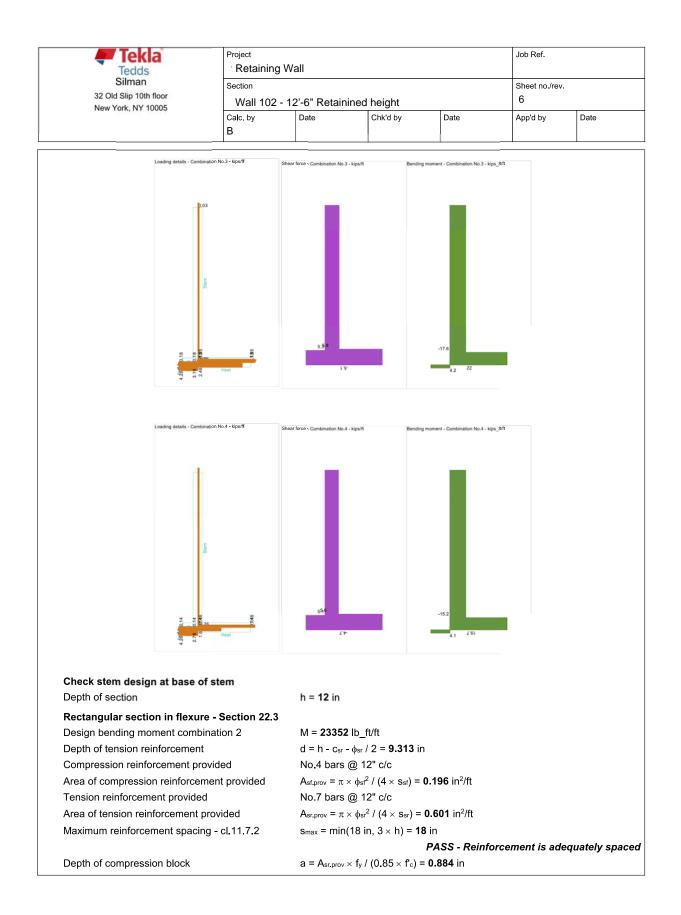
In accordance with ACI 318-14

Concrete details

Compressive strength of concrete Concrete type

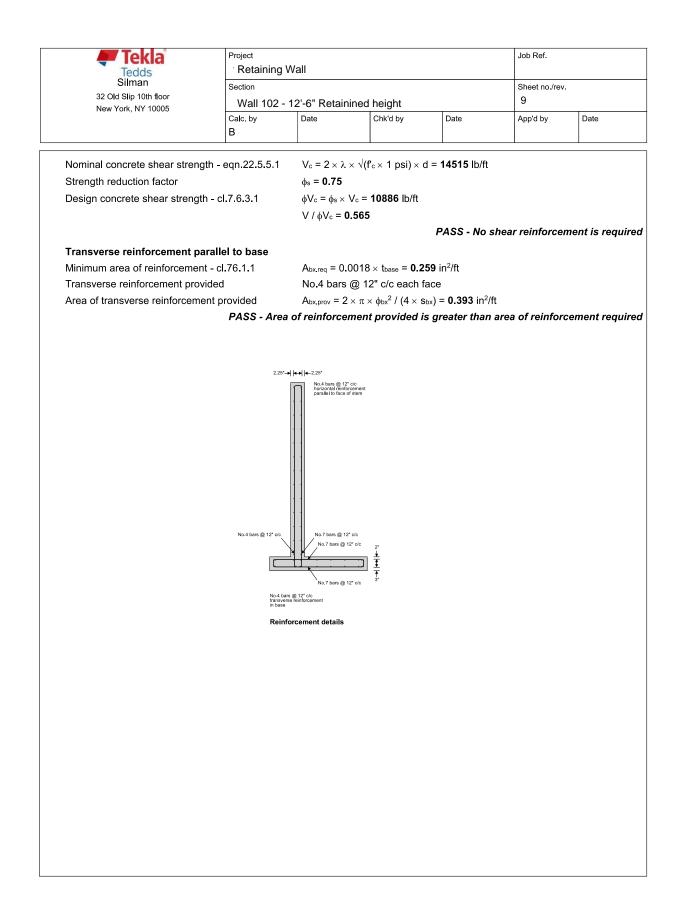
Reinforcement details Yield strength of reinforcement


Modulus of elasticity or reinforcement


Cover to reinforcement Front face of stem Rear face of stem Top face of base Tedds calculation version 2.9.07

f'_c = **4000** psi Normal weight

f_y = **60000** psi E_s = **29000000** psi


c_{sf} = **2.25** in c_{sr} = **2.25** in c_{bt} = **2** in

Tekla	Project Retaining	Wall		Job Ref.					
Silman	Section			Sheet no./rev.					
32 Old Slip 10th floor		- 12'-6" Retai	nined heiaht		7				
New York, NY 10005	Calc. by	Date	Chk'd by	Date	App'd by	Date			
	В								
Neutral axis factor - cl.22.2.2.4	.3	β1 = min(max(0.85 - 0.05 ×	(fˈc - 4 ksi) / 1	ksi, 0.65), 0.85)	= 0.85			
Depth to neutral axis		c = a / β1	= 1.04 in						
Strain in reinforcement		εt = 0.003	8 × (d - c) / c = 0.0 2	23854					
				Section i	is in the tension	controlled a			
Strength reduction factor			nax(0.65 + (ε _t - 0.0	, ,		.9			
Nominal flexural strength		$M_n = A_{sr.pr}$	$f_{vv} \times f_y \times (d - a / 2)$	= 26670 lb_ft/	ft				
Design flexural strength			: Mn = 24003 lb_ft/	/ft					
		Μ / φMn =							
			- Design flexural	l strength exc	ceeds factored b	pending mor			
By iteration, reinforcement requ			.584 in²/ft						
Minimum area of reinforcemen			nax(3 × √(f'c × 1 ps						
		orcement pro	vided is greater t	nan minimun	n area of reinfor	cement requ			
Rectangular section in shear	- Section 22.5								
Design shear force	1 4 9 9 4	V = 5313	ib/ft						
Concrete modification factor - o		$\lambda = 1$	$\lambda = 1$ V _c = 2 × λ × $\sqrt{(f_c × 1 psi)}$ × d = 14135 lb/ft						
Nominal concrete shear streng	tn - eqn.22.5.5.1		. × √(ťc× 1 psi) × o	a = 14135 lb/ft					
Strength reduction factor		φs = 0.75							
Design concrete shear strength	n - cl.11.5.1.1		V _c = 10602 lb/ft						
		$V / \phi V_c =$	0.501	DASS No	abaan nainfanaa	mont io roor			
				PA33 - NO	shear reinforce	ment is requ			
Horizontal reinforcement par				0 : 200					
Minimum area of reinforcemen			$.002 \times t_{stem} = 0.283$						
Transverse reinforcement prov			s @ 12" c/c each f $_{2}^{2} imes \pi imes \phi_{sx}^{2}$ / (4 $ imes$ s		/6+				
Area of transverse reinforceme	•		ement provided is	,		cement requ			
Check base design at toe				U					
Depth of section		h = 12 in							
Rectangular section in flexur	e - Section 22.3								
Design bending moment comb	ination 2	M = 441 5	lb_ft/ft						
Depth of tension reinforcement		$d = h - c_{bl}$	_b - φ _{bb} / 2 = 8.563 i	in					
Compression reinforcement pro	ovided	No.7 bars	s @ 12" c/c						
Area of compression reinforcer	nent provided	$A_{bt.prov} = \pi$	$t \times \phi_{bt}^2 / (4 \times s_{bt}) =$	0.601 in²/ft					
Tension reinforcement provide	b	No.7 bars	s @ 12" c/c						
Area of tension reinforcement	provided	$A_{bb,prov} = \pi \times \phi_{bb}^2 / (4 \times s_{bb}) = 0.601 \text{ in}^2/\text{ft}$							
Maximum reinforcement spacir	ng - cl.7.7.2.3	$s_{max} = min(18 in, 3 \times h) = 18 in$							
				PASS - Rein	forcement is ad	equately spa			
Depth of compression block		a = A _{bb.prc}	$_{\rm vv} imes f_y$ / (0.85 $ imes$ f'c) =	= 0.884 in					
Neutral axis factor - cl.22.2.2.4	.3	$\beta_1 = min($	max(0.85 - 0.05 \times	(f'c - 4 ksi) / 1	ksi, 0.65), 0.85)	= 0.85			
Depth to neutral axis		c = a / β ₁	= 1.04 in						
Strain in reinforcement		εt = 0.003	$3 \times (d - c) / c = 0.02$	21691					
				Section i	is in the tension	controlled :			
						oona oneu i			

32 Old Slip 10th floor New York, NY 10005	Project Retaining V	Retaining Wall			Job Ref.	
	Section				Sheet no./rev	
	Wall 102 - 12'-6" Retainined height				8	
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	В					
Nominal flexural strength		Mn = Abb.prov	× f _y × (d - a / 2)) = 24415 lb_ft/	ft	
Design flexural strength		$\phi M_n = \phi_f \times M_n = 21973 \text{ lb}_ft/ft$				
		M / φMn = 0.201				
		PASS -	Design flexura	l strength exc	eeds factored b	ending mor
By iteration, reinforcement required by analysis		A _{bb.des} = 0.1	16 in²/ft	-		•
Minimum area of reinforcement - cl.7.6.1.1		$A_{bb,min} = 0.0018 \times h = 0.259 \text{ in}^2/\text{ft}$				
PAS	S - Area of reinfor	cement provid	led is greater t	than minimum	area of reinfor	cement requ
Rectangular section in shear	- Section 22.5					
Design shear force		V = 5595 lb	/ft			
Concrete modification factor - cl.19.2.4		$\lambda = 1$				
Nominal concrete shear strength - eqn.22.5.5.1		$V_c = 2 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi}) \times d} = 12997 \text{ lb/ft}$				
Strength reduction factor		$\phi_{\rm s} = 0.75$				
Design concrete shear strength - cl.7.6.3.1			a = 9748 lb/ft			
		$\phi V_c = \phi_s \times V_c = 9748 \text{ lb/ft}$ V / $\phi V_c = 0.574$				
		ν / φν. – 0.574 PASS - No shear reinforcement is requi				
				PA33 - NO 3	snear reinforcei	nem is requ
Check base design at heel						
Depth of section		h = 12 in				
Rectangular section in flexu	re - Section 22.3					
Design bending moment combination 2		M = 18581 lb_ft/ft				
Depth of tension reinforcement		d = h - c _{bt} - φ _{bt} / 2 = 9.563 in				
Compression reinforcement provided		No.7 bars @ 12" c/c				
Area of compression reinforcement provided		$A_{bb,prov} = \pi \times \phi_{bb}^2 / (4 \times s_{bb}) = 0.601 \text{ in}^2/\text{ft}$				
Tension reinforcement provided		No.7 bars @ 12" c/c				
Area of tension reinforcement provided		$A_{bt,prov} = \pi \times \phi_{bt}^2 / (4 \times s_{bt}) = 0.601 \text{ in}^2/\text{ft}$				
Maximum reinforcement spacing	ng - cl.7.7.2.3	s _{max} = min(1	8 in, 3 × h) = 1 8	8 in		
				PASS - Reinf	forcement is add	equately spa
Depth of compression block		$a = A_{bt,prov} \times f_y / (0.85 \times f_c) = 0.884$ in				
Neutral axis factor - cl.22.2.2.4.3		$\beta_1 = min(max(0.85 - 0.05 \times (f_c - 4 \text{ ksi}) / 1 \text{ ksi}, 0.65), 0.85) = 0.85$				
Depth to neutral axis		c = a / β1 = 1.04 in				
Strain in reinforcement		$\epsilon_t = 0.003 \times$	(d - c) / c = 0.02	24575		
				Section is	s in the tension	controlled z
Strength reduction factor		$\phi_f = min(max(0.65 + (\epsilon_t - 0.002) \times (250 / 3), 0.65), 0.9) = 0.9$				
Nominal flexural strength		$M_n = A_{bt,prov} \times f_y \times (d - a / 2) = 27421 \text{ lb_ft/ft}$				
Design flexural strength		$\phi M_n = \phi_f \times M_n = 24679 \text{ lb_ft/ft}$				
		M / φMn = 0 .	753			
		PASS -	Design flexura	l strength exc	eeds factored b	ending mor
By iteration, reinforcement req	A _{bt.des} = 0.447 in ² /ft					
Minimum area of reinforcemen	$A_{bt,min} = 0.0018 \times h = 0.259 \text{ in}^2/\text{ft}$					
PAS	S - Area of reinfor	cement provid	led is greater t	than minimum	area of reinfor	cement requ
Rectangular section in shear	- Section 22.5					
Design shear force	V = 6150 lb/ft					

