ReCon Wall

Project: Wall Replacement Location: 7 Fairlawn Ave

Designer: AGB
Date: 7/14/2021
Section: Section 1

Design Method: NCMA_09_3rd_Ed

Design Unit: ReCon

Seismic Acc: 0.180

SOIL PARAMETERS ϕ coh

Retained Soil: 30 deg Opsf 125pcf Foundation Soil: 30 deg Opsf 120pcf

Leveling Pad: 40 deg Opsf 135pcf Crushed Stone

Crushed Stone Interface is true, ϕ = 2deg

GEOMETRY

Design Height: 5.33ft Live Load: 100psf Spec Load: 150ft
Wall Batter/Tilt: 3.60/ 0.00 deg Live Load Offset: 0.00ft Spec Load Offset: 25ft
Embedment: 0.50ft Live Load Width: 50ft Spec Load Width: 15ft

Leveling Pad Depth: 0.50ft Dead Load: 0psf
Slope Angle: 27.0 deg Dead Load Offset: 0.0ft
Slope Length: 20.0ft Dead Load Width: 0ft
Slope Toe Offset: 0.0ft Leveling Pad Width: 4.75ft

Vert δ on Single Dpth

FACTORS OF SAFETY (Static / Seismic)

Sliding: 1.50 / 1.125 Overturning: 1.50 / 1.125

Bearing: 2.00 / 1.5

RESULTS (Static / Seismic)

FoS Sliding: 1.68 (lvlpd) / 1.26 FoS Overturning: 2.89 / 1.92 Bearing: 1149.61 / 1275.14 FoS Bearing: 6.00 / 5.41

Name	Elev.	ka	kae	Pa	Pae	Pir	Paq	Paq2	PaT	FSsl	FoS OT	siesFSsl	FoS SeisOT
24T	4.00	0.543	0.916	60	101	27	72	0	132	58.06	6.85	58.69	5.84
39	2.67	0.488	0.835	216	370	72	153	0	369	21.90	5.94	18.10	4.21
45	1.33	1.071	1.874	1069	1871	124	428	0	1497	8.59	4.17	6.38	2.89
45	0.00	0.880	1.513	1562	2686	175	469	0	2031	1.68[100.00]	1.92	1.26[1.26]	

Column Descriptions:

ka: active earth pressure coefficient

kae: active seismic earth pressure coefficient

Pa: active earth pressure
Pae: dynamic earth pressure

Pir: inertia force

Paq: live surcharge earth pressure

Paq2: live load 2 surcharge earth pressure Paqd: dead surcharge earth pressure (PaC): reduction in load due to cohesion

PaT: sum of all earth pressures

FSsl(lvl Pad): factor of safety for sliding at each layer. (FS sliding below the leveling pad)

FSot: factor of safety of overturning about the toe.

COMPOUND RESULTS

Compound stability is a global analysis (Bishop) with the failure planes originating at the top of the slope / wall and exiting out through the face of the wall. For MSE walls, the resistance of the geogrid reinforcement is included in the analysis and the shear resistance of the face units is included.

ID	Enter Point X	Enter Point Y	Exit Point X	Exit Point Y	Center X	Center Y	Radius	FoS
3	16.48	12.58	3.75	0.00	-3.25	19.81	21.01	1.379
2	16.48	12.58	3.75	0.00	-17.67	34.40	40.52	1.384
3	15.41	12.03	3.75	0.00	-2.31	17.53	18.55	1.425
2	15.41	12.03	3.75	0.00	-15.27	30.09	35.60	1.426
4	16.48	12.58	3.75	0.00	1.79	14.71	14.84	1.464
2	14.34	11.49	3.75	0.00	-13.04	26.10	31.04	1.478
3	14.34	11.49	3.75	0.00	-1.44	15.42	16.27	1.481
4	15.41	12.03	3.75	0.00	2.25	13.11	13.20	1.527
2	13.28	10.95	3.75	0.00	-10.97	22.43	26.83	1.540
3	13.28	10.95	3.75	0.00	-0.66	13.46	14.17	1.557

RETAINING WALL UNITS

STRUCTURAL PROPERTIES:

N is the normal force [or factored normal load] on the base unit The default leveling pad to base unit shear is 0.8 $tan(\phi)$ [AASHTO 10.6.3.4] or may be the manufacturer supplied data. ϕ is assumed to be 40 degrees for a stone leveling pad.

Unit	Ht (in)	Width (in)	Depth (in)	Concr_Vol (cf/ft)	Concr_Density (pcf)	CG (in)
Cap 6.5	6.50	48.00	24.00	1.08	145.00	12.00, 3.25
Cap 8	8.00	48.00	24.00	1.33	145.00	12.00, 4.00
24Top Block	16.00	48.00	24.00	2.01	145.00	10.68, 8.00
39Top Block	16.00	48.00	39.00	2.25	145.00	16.00, 8.00
024(060cm)	16.00	48.00	24.00	2.50	145.00	11.64, 8.00
039(100cm)	16.00	48.00	39.00	3.88	145.00	18.60, 8.00
045(115cm)	16.00	48.00	45.00	4.38	145.00	21.26, 8.00
060(150cm)	16.00	48.00	60.00	5.52	145.00	27.64, 8.00
066(165cm)	16.00	48.00	66.00	5.93	145.00	30.10, 8.00
072(180cm)	16.00	48.00	72.00	6.35	145.00	32.70, 8.00
078(200cm)	16.00	48.00	78.00	6.78	145.00	35.30, 8.00
084(215cm)	16.00	48.00	84.00	7.20	145.00	38.00, 8.00

FORCE DETAILS

The details below shown how the forces are calculated for each force component. The values shown are not factored. All loads are based on a unit width (ppf / kNpm).

Layer	Block Wt	Soil Fill Wt	Soil Wt
1	291	79	30
2	562	54	0
3	634	74	0
4	634	74	

Block Weight (Force v (Block Wt + Infill Soil)) = 2403ppf X-Arm = 1.70ft Soils Block Weight (Force v) = 30ppf X-Arm = 2.38ft

Active Earth Pressure Pa = 1562ppf

$$Pa_h$$
 (Force H) = $Pa cos(\delta - batter) = 1562 x cos(26.3 - (-15.7)) = 1162ppf$

$$Y-Arm = 1.78ft$$

Pa_v (Force V) = Pa
$$\sin(\delta$$
 - batter) = 1562 x $\sin(26.3 - (-15.7))$ = 1044ppf X-Arm = 3.25ft

Live Load Pq = 469ppf

Pq_h (Force H) = Pq
$$cos(\delta$$
 - batter) = 469 x $cos(26.3$ - -15.7) = 349ppf

$$Y-Arm = 2.66ft$$

$$Pq_v (Force V) = Pq sin(\delta - batter) = 469 x sin(26.3 - -15.7) = 313ppf$$

$$X-Arm = 3.00ft$$

CALCULATION RESULTS

OVERVIEW

ReCon Wall Systems calculates stability assuming the wall is a rigid body. Forces and moments are calculated about the base and the front toe of the wall. The base block width is used in the calculations. The concrete units and granular fill over the blocks are used as resisting forces.

EARTH PRESSURES

The method of analysis uses the Coulomb Earth Pressure equation (below) to calculate active earth pressures. Wall friction is assumed to act at the back of the wall face. The component of earth pressure is assumed to act perpendicular to the boundary surface. The effective δ angle is δ minus the wall batter at the back face. If the slope breaks within the failure zone, a trial wedge method of analysis is used.

EXTERNAL EARTH PRESSURES

Effective δ angle (3/4 retained phi)	δ =26.3 deg
Coefficient of active earth pressure	ka =0.880

External failure plane	ρ = 59 deg
Effective Angle from horizontal	α =74.30 deg
Coefficient of passive earth pressure: $kp = (1 + sin(\phi)) / (1 - sin(\phi))$	kp = 3.00

FORCES AND MOMENTS

The program resolves all the geometry into simple geometric shapes to make checking easier. All x and y coordinates are referenced to a zero point at the middle of the base block for eccentricity calculations.

UNFACTORED LOADS

Name	Factor γ	Force (V)	Force (H)	X-len	Y-len	Мо	Mr
Face Blocks(W1)	1.00	2122		1.70			3598
Soil Fill(W0)	1.00	281		2.31			651
Soil Wedge(W2)	1.00	30		2.38			71
Pa_h	1.00		1162		1.78	2064	
Pa_v	1.00	1044		3.25			3395
Pq_h	1.00		349		2.66	929	
Pq_v	1.00	313		3.00			941
Sum V / H	1.00	3791	1511		Sum Mom	2994	8655

W0: stone within units W1: facing units

W2: soil wedge behind the face

X-Len: is measured from the center of the base (+) Driving, (-) Resisting.

Pa_h: horizontal earth pressure
Pq_h: horizontal surcharge pressure
Pq_v: vertical earth pressure
Pq_v: vertical surcharge pressure

BEARING LOADS: NCMA

Name	Factor γ	Force (V)	Force (H)	X-len	Y-len	Мо	Mr
Soil Fill(W0)	1.00	281		-0.44			-123
Face Blocks(W1)	1.00	2122		0.18		380	
Soil Wedge(W2)	1.00	30		-0.50			-15
Pa_h	1.00		1162		1.78	2064	
Pa_v	1.00	1044		-1.38			-1436
Pq_h	1.00		349		2.66	929	
Pq_v	1.00	313		-1.13			-353
Sum V / H	1.00	3791	1511		Sum Mom	3373	-1927

BASE SLIDING

Sliding at the base is checked at the block to leveling pad interface between the base block and the leveling pad.

Forces Resisting sliding = W0 + W1 + W2 + Pav + Pqv 281 + 2122 + 30 + 1044 + 313 N = 3791ppf

Resisting force at pad = (N * 0.8 * tan(slope) + intercept x L)3791 x0.8 x tan(40.0) + 0.0 Rf =2,544

Driving force is the horizontal component of

Pah + Pqh

1162 + 349 Df =1,511

FSsl = Rf / Df FSsl = 1.68

OVERTURNING ABOUT THE TOE

Overturning at the base is checked by assuming rotation about the front toe by the block mass and the soil retained on the blocks. Allowable overturning can be defined by eccentricity (e/L). For concrete leveling pads eccentricity is checked at the base of the pad.

Moments Resisting Overturning = M0 + M1 + M2 + MPav + MPqv 651 + 3598 + 71 + 3395 + 941

Mr = 8655ft-lbs

Moments causing Overturning = MPah + MPqh 2064 + 929

Mo =2994ft-lbs

FSot = Mr / Mo FSot =8655 / 2994

FSot =2.89

ECCENTRICITY AND BEARING

Eccentricity is the calculation of the distance of the resultant away from the centroid of mass. In wall design the eccentricity is used to calculate an effective footing width.

```
Calculation of Eccentricity
SumV = W0 + W1 + W2 + Pav + Pqv
                                                                                  SumV = 3791
   281 + 2122 + 30 + 1044 + 313
Moment Resisting
                                                                                  Mr = -1927
                                                                                  Md = 3373
Moment Driving
   e = (SumMr + SumMd)/(SumV)
                                                                                  e = 0.381ft
   e = (1446/3790.51)
Calculation of Bearing Pressures
   Qult = c * Nc + q * Nq + 0.5 * \gamma * (B') * Ng
    where:
       Nc = 30.14
       Nq = 18.40
       Ng = 22.40
       c =0.00psf
       q = 120.00psf(soil weight above base of leveling pad)
       B' = B - 2e + Ivlpad = 3.49ft
       Gamma =120pcf
   Calculate Ultimate Bearing, Qult
                                                                                  Qult =6896psf
   Bearing Pressure = (SumVert / B') + (LP width * gamma)
                                                                                  sigma =1149.61psf
   Calculated Factors of Safety for Bearing
                                                                                  Qult/sigma =6.00
```

SEISMIC CALCULATIONS

The loads considered under seismic loading are primarily inertial loadings. The wave passes the structure putting the mass into motion and then the mass will try to continue in the direction of the initial wave. In the calculations you see the one dynamic earth pressure from the wedge of the soil behind the reinforced mass, and then all the other forces come from inertia calculations of the face put into motion and then trying to be held in place.

Design Ground Acceleration	A =0.180
Horizontal Acceleration [kh = A/2]	kh = 0.073
Vertical Acceleration	kv = 0.000

INERTIA FORCES OF THE STRUCTURE

Face (Pif) = (W1)*kh(ext) = 2121.51*0.073

Pif =175.31ppf

SEISMIC THRUST

Kae Kae Kae = 1.513
D_Kae = Kae - Ka = (1.513 - 0.000)
D_Kae = 0.633
Pae = 0.5*gamma*(H)^2D_Kae
Pae_h = Pae*cos(δ)
Pae_h = 835.76ppf
Pae_v = Pae*sin(δ)
Pae_v = 751.24ppf

TABLE OF RESULTS FOR SEISMIC REACTIONS

SEISMIC SLIDING

The target factor of safety for seismic is 75% of the static value. Live loads are ignored in these analysis based on the basic premise that the probability of the maximum acceleration occurring at the exact same instant as the maximum live load is small.

Details are only shown for sliding at the base of blocks, a check is made at the foundation level with the answer only shown.

The vertical resisting forces is W0 + W1 + W2 + Pav + Paev

281 + 2122 + 30 + 1044 + 751

Resisting force = SumVs * tan(phi) + intercept x L

Driving force = Pa_h + Pae_h + Pif

=1162 +836 +175

FDr =2173ppf

FOS = FRe/FDr

FoS =1.26

SEISMIC OVERTURNING

Overturning is rotation about the front toe of the wall. Eccentricity is also a check on overturning

Resisting Moment = M0 + M1 + M2 + MPav + MPaev

651 + 3598 + 71 + 3395 + 2442 + SumMrS = 10156ftppf

Driving Moment = MPah + MPaeh + MPif

2064 + 2673 + 561 SumMoS = 5297.47ftppf

Factor of Safety = SumMrS/SumMoS FoS = 1.92

SEISMIC BEARING

Bearing is the ability of the foundation to support the mass of the structure.

Qult = c*Nc + q*Nq + 0.5*gamma*(B')*Ng where: Nc = 30.14 Nq = 18.40 Ng = 22.40 c = 0.00psf q = 120.00psf

Calculate Ultimate Bearing, Qult (seismic)

eccentricity (e)

Equivalent Footing Width, B' = L - 2e + IvI pad

Bearing Pressure = sumVs/B'

Factor of Safety for Bearing = Qult/Bearing

Qult = 6895.57psf

e = 0.726

B' = 3ft

sigma = 1275psf

FoS = 5

